Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 14(45): 13090-13094, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023493

RESUMO

In molecular dimers that undergo intramolecular singlet fission (iSF), efficient iSF is typically accompanied by triplet pair annihilation at rates which prohibit effective triplet harvesting. Collisional triplet pair separation and intramolecular separation by hopping to additional sites in extended oligomers are both strategies that have been reported to be effective for acene based iSF materials in the literature. Herein, a family of highly soluble diphenylhexatriene (DPH) oligomers were synthesized and investigated using transient absorption spectroscopy to determine whether these approaches can be applied to the non-acene singlet fission chromophore, DPH. While iSF proceeds rapidly for all three new materials, neither concentration nor oligomer size result in significantly enhanced triplet pair lifetime relative to the dilute dimer case. These null results indicate the fallibility of the collisional separation and oligomerisation strategies.

2.
Nanoscale Horiz ; 8(8): 1090-1097, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37272286

RESUMO

Organic-inorganic nanocomposite films formed from blends of small-molecule organic semiconductors and colloidal quantum dots are attractive candidates for high efficiency, low-cost solar energy harvesting devices. Understanding and controlling the self-assembly of the resulting organic-inorganic nanocomposite films is crucial in optimising device performance, not only at a lab-scale but for large-scale, high-throughput printing and coating methods. Here, in situ grazing incidence X-ray scattering (GIXS) gives direct insights into how small-molecule organic semiconductors and colloidal quantum dots self-assemble during blade coating. Results show that for two blends separated only by a small difference in the structure of the small molecule forming the organic phase, crystallisation may proceed down two distinct routes. It either occurs spontaneously or is mediated by the formation of quantum dot aggregates. Irrespective of the initial crystallisation route, the small-molecule crystallisation acts to exclude the quantum dot inclusions from the growing crystalline matrix phase. These results provide important fundamental understanding of structure formation in nanocomposite films of organic small molecules and colloidal quantum dots prepared via solution processing routes. It highlights the fundamental difference to structural evolution which can be made by seemingly small changes in system composition. It provides routes for the structural design and optimisation of solution-processed nanocomposites that are compatible with the large-scale deposition manufacturing techniques that are crucial in driving their wider adoption in energy harvesting applications.

3.
J Am Chem Soc ; 145(4): 2499-2510, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36683341

RESUMO

Intramolecular singlet fission (iSF) facilitates single-molecule exciton multiplication, converting an excited singlet state to a pair of triplet states within a single molecule. A critical parameter in determining the feasibility of SF-enhanced photovoltaic designs is the triplet energy; many existing iSF materials have triplet energies too low for efficient transfer to silicon via a photon multiplier scheme. In this work, a series of six novel dimers based upon the high-triplet-energy, SF-active chromophore, 1,6-diphenyl-1,3,5-hexatriene (DPH) [E(T1) ∼ 1.5 eV], were designed, synthesized, and characterized. Transient absorption spectroscopy and fluorescence lifetime studies reveal that five of the dimers display iSF activity, with time constants for singlet fission varying between 7 ± 2 ps and 2.2 ± 0.2 ns and a high triplet yield of 163 ± 63% in the best-performing dimer. A strong dependence of the rate of fission on the coupling geometry is demonstrated. For optimized iSF behavior, close spatial proximity and minimal through-bond communication are found to be crucial for balancing the rate of SF against the reverse recombination process.

4.
ACS Appl Mater Interfaces ; 9(12): 10971-10982, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263058

RESUMO

A novel main-chain polyfullerene, poly[fullerene-alt-2,5-bis(octyloxy)terephthalaldehyde] (PPC4), is investigated for its hypothesized superior morphological stability as an electron-accepting material in organic photovoltaics relative to the widely used fullerene phenyl-C61-butyric acid methyl ester (PCBM). When mixed with poly(3-hexylthiophene-2,5-diyl) (P3HT), PPC4 affords low-charge-generation yields because of poor intermixing within the blend. The adoption of a multiacceptor system, by introducing PCBM into the P3HT:polyfullerene blend, was found to lead to a 3-fold enhancement in charge generation, affording power conversion efficiencies very close to that of the prototypical P3HT:PCBM binary control. Upon thermal stressing and in contrast to the P3HT:PCBM binary, photovoltaic devices based on the multiacceptor system demonstrated significantly improved stability, outperforming the control because of suppression of the PCBM migration and aggregation processes responsible for rapid device failure. We rationalize the influence of the fullerene miscibility and its implications on the device performance in terms of a thermodynamic model based on Flory-Huggins solution theory. Finally, the potential universal applicability of this approach for thermal stabilization of organic solar cells is demonstrated, utilizing an alternative low-band-gap polymer-donor system.

5.
Adv Funct Mater ; 25(3): 409-420, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25866496

RESUMO

In this work, molecular tuning of metal xanthate precursors is shown to have a marked effect on the heterojunction morphology of hybrid poly(3-hexylthiophene-2,5-diyl) (P3HT)/CdS blends and, as a result, the photochemical processes and overall performance of in situ fabricated hybrid solar cells. A series of cadmium xanthate complexes is synthesized for use as in situ precursors to cadmium sulfide nanoparticles in hybrid P3HT/CdS solar cells. The formation of CdS domains is studied by simultaneous GIWAXS (grazing incidence wide-angle X-ray scattering) and GISAXS (grazing incidence small-angle X-ray scattering), revealing knowledge about crystal growth and the formation of different morphologies observed using TEM (transmission electron microscopy). These measurements show that there is a strong relationship between precursor structure and heterojunction nanomorphology. A combination of TAS (transient absorption spectroscopy) and photovoltaic device performance measurements is used to show the intricate balance required between charge photogeneration and percolated domains in order to effectively extract charges to maximize device power conversion efficiencies. This study presents a strong case for xanthate complexes as a useful route to designing optimal heterojunction morphologies for use in the emerging field of hybrid organic/inorganic solar cells, due to the fact that the nanomorphology can be tuned via careful design of these precursor materials.

6.
J Phys Chem Lett ; 4(24): 4253-7, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-26296174

RESUMO

Development of design rules for hybrid inorganic-organic solar cells through understanding charge generation and recombination dynamics is an important pathway for the improvement of solar cell conversion efficiencies. In this Letter, we study the dynamics of charge generation in CdS:polymer blends by transient absorption spectroscopy. We show that charge generation following excitation of the inorganic component is highly efficient and can occur up to a few nanoseconds after excitation, allowing for diffusion of charges within the inorganic component to an interface. In contrast, charge generation following excitation of the organic component occurs on subpicosecond time scales but suffers from two loss processes, incomplete exciton dissociation and geminate recombination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...